Properties of recA441 protein-catalyzed DNA strand exchange can be attributed to an enhanced ability to compete with SSB protein.
نویسندگان
چکیده
We have investigated the recombinase activity of recA441 protein by comparing its in vitro DNA strand exchange activity to that of wild-type recA protein. Consistent with its proficiency in recombination in vivo, recA441 protein is able to catalyze the in vitro exchange of a circular single-stranded DNA molecule for a homologous strand in a linear double-stranded DNA molecule. Under conditions optimal for wild-type recA protein, the rates of joint molecule formation are the same for the two recA proteins, but the wild-type protein converts these intermediate species to gapped circular heteroduplex DNA product molecules more rapidly than recA441 protein. In the recA441 protein reaction, joint molecules are instead converted to extensive homology-dependent DNA networks via presumed reinitiation reactions. Under some conditions, the DNA strand exchange activity of recA441 protein is enhanced relative to the wild-type. These conditions include when single-stranded DNA.SSB protein (where SSB is Escherichia coli single-stranded DNA-binding protein) complexes are formed prior to the addition of recA protein, at low magnesium ion concentration in the presence of spermidine, and at low ATP concentrations. Under the conditions examined, recA441 protein competes more effectively with SSB protein for DNA-binding sites; thus, the differences between the strand exchange activities of the wild-type and recA441 proteins can be attributed to this enhanced ability in SSB protein competition.
منابع مشابه
Biochemical basis of the constitutive coprotease activity of RecA P67W protein.
The mutation of Pro67 to Trp (P67W) in the Escherichia coli RecA protein results in reduced recombination and constitutive coprotease phenotypes. We examined the biochemical properties of this mutant in an effort to understand these altered behaviors. We find that RecA P67W protein can access single-stranded DNA (ssDNA) binding sites within regions of secondary structure more effectively than w...
متن کاملRelationship of the physical and enzymatic properties of Escherichia coli recA protein to its strand exchange activity.
We have shown that performing the recA protein catalyzed strand exchange reaction in the presence of acetate anions, rather than chloride which is commonly used, greatly increases the rate of the reaction. The initial rate of the reaction in an acetate-based buffer is approximately 3-4 times higher in the presence of Escherichia coli single-stranded DNA binding protein (SSB protein) and 2 times...
متن کاملEnhancement of recA protein-promoted DNA strand exchange activity by volume-occupying agents.
To investigate the in vivo effects of macromolecular crowding we examined the effect of inert macromolecules such as polyvinyl alcohol and polyethylene glycol on the in vitro activity of recA protein. The addition of either of these volume-occupying agents enables recA protein to promote homologous pairing and exchange of DNA strands at an otherwise nonpermissive magnesium ion concentration. In...
متن کاملBiochemical basis of the constitutive repressor cleavage activity of recA730 protein. A comparison to recA441 and recA803 proteins.
The recA730 mutation results in constitutive SOS and prophage induction. We examined biochemical properties of recA730 protein in an effort to explain the constitutive activity observed in recA730 strains. We find that recA730 protein is more proficient than the wild-type recA protein in the competition with single-stranded DNA binding protein (SSB protein) for single-stranded DNA (ssDNA) bindi...
متن کاملBacillus subtilis RecU Holliday-junction resolvase modulates RecA activities
The Bacillus subtilis RecU protein is able to catalyze in vitro DNA strand annealing and Holliday-junction resolution. The interaction between the RecA and RecU proteins, in the presence or absence of a single-stranded binding (SSB) protein, was studied. Substoichiometric amounts of RecU enhanced RecA loading onto single-stranded DNA (ssDNA) and stimulated RecA-catalyzed D-loop formation. Howev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 7 شماره
صفحات -
تاریخ انتشار 1990